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A new method of calculating nonequi!ibrium density matrices with the aid 
of the quantum integrals of motion is proposed. The method is shown to 
be very effective in the case of systems described by means of quadratic 
Hamiltonians. The possibility of constructing phenornenological non- 
stationary Hamiltonians for a wide class of dissipative systems is discussed. 
The exact formulas for nonequilibrium density matrices of arbitrary 
quadratic systems are obtained. The quantum problem of the motion of a 
charged particle in uniform electric and magnetic fields in the presence of 
a frictional force proportional to the velocity is solved exactly by means of 
introducing the new phenomenological Hamiltonian. 
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1. I N T R O D U C T I O N  

In  Refs. 1 and 2 a new method of calculating Green ' s  funct ions and equi- 
l ibr ium density matrices of  q u a n t u m  systems with the aid of q u a n t u m  
integrals of  the mot ion  was developed. The aim of  the present paper is to 
derive similar equat ions relat ing the t ime evolut ion of a density matrix to 
the integrals of  the mot ion  of  the q u a n t u m  system under  study. We use these 
equat ions to obta in  the exact formulas describing the t ime evolut ion of  the 
density matrices of the most  general quadrat ic  qua n t um systems and  some 
special examples of  such systems. 

For  simplicity we consider in the present paper  only nondegenera te  
systems obeying Maxwel l -Bol tzmann  statistics. 

We consider a new general approach which enables us to give a phenom-  
enological  description of  nonequi l ib r ium processes in the framework of  
q u a n t u m  mechanics. 
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The main problem in studying nonequilibrium systems is to describe 
dissipative processes in the framework of quantum mechanics. The most 
correct way to do this is to place the system considered in a large heat 
reservoir and to calculate the evolution of the enlarged system. After this 
the density matrix of the system under study can be obtained by means of 
integrating over the variables of the reservoir. (8~ This method was used, e.g., 
in a recent paper( 4~ for calculating the exact nonequilibrium density matrix 
of a particle in a uniform electric field. However, the calculations in the 
framework of this scheme can be made exactly only in few cases. Therefore, 
although there are several elegant and effective methods which enable one 
to obtain the'approximate expressions for the nonequilibrium density matrices 
for arbitrary Hamiltonians and arbitrary weak external fields, such as Kubo's 
method and others, ~3,5"6~ the elaboration of simple and effective methods in 
the theory of nonequilibrium processes is still a topical problem. 

Besides microscopic methods, many authors have considered other 
methods which can be called phenomenological. Although phenomenological 
approaches are not strictly well-founded, they are simpler from the viewpoint 
of calculations, and they yield rather reasonable results in many cases. For 
example, one can consider non-Hermitian Hamiltonians with complex 
coefficients leading to damping. (7~ Another approach is to consider various 
nonlinear generalizations of the SchrSdinger equation (see Refs. 8-10 and 
references therein). The second method is usually applied to obtain a satis- 
factory explanation of the experimental results on nuclear collisions. 

Many authors have considered nonstationary Hamiltonians to describe 
phenomenologically friction in quantum mechanics. (See, e.g., the earlier 
references 11-13 and the more recent references 14-18 and references therein.) 
All such Hamiltonians had the form 

/~ = dfil,fi2 .... ,fiN)e-rt + ~0(~1, 22,..., 2N)e rt (1) 

The Hamiltonian (1) leads to the following classical equations of the motion: 

k = 1, 2,..., N (2) 
92E 

i = 1  

Therefore F is the friction coefficient. However, the Hamiltonian (1) 
only describes systems with potential forces (besides frictional ones). It is 
of interest to find such Hamiltonians that describe damping in systems with 
nonpotential forces, e.g., for a particle in an external magnetic field. This 
problem was not considered earlier, but it can be easily solved if one takes 
into account Havas' results. (19) Havas has shown that for a wide class of 
systems of ordinary differential equations one can always find an equivalent 
system of equations that are Euler's equations for certain Lagrangians. 
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Using his method, we show how to construct the nonstationary Hamil- 
tonians describing arbitrary systems with forces depending linearly on the 
velocities and coordinates. To illustrate the general scheme, we consider 
the Hall effect by means of the new approach. 

2. THE APPLICATION OF INTEGRALS OF M O T I O N  FOR 
CALCULATING DENSITY M A T R I C E S  OF 
Q U A N T U M  S Y S T E M S  

Let us consider an arbitrary quantum system with N degrees of freedom. 
The set of generalized coordinates (xl ..... xN) will be designated by the vector 
x, and the set of generalized momenta (Pl, P2,...,Pu) by the vector p. An 
operator ,t(t) is called the integral of the motion if it satisfies the equation 
[H(t) is the Hamiltonian of the system] 

[ih O/Ot - 121(0, l(t)]~, = 0 (3) 

in the space of functions ~b satisfying the Schr6dinger equation and necessary 
boundary conditions. 

I f  the evolution operator 0(t) satisfying the equation 

ih ~Ol~t = / t 0 ,  t > 0; U(0) = / ~  (4) 

(/~ is the unit operator; the initial moment always will be chosen to be equal 
to zero for convenience) were known, the statistical operator p(t) (the density 
matrix is the kernel of this operator) at the moment t > 0 could be calculated 
by means of the formula (3~ (provided the Hamiltonian is Hermitian) 

/3(t) = O(t)poO-l(t);  /30 --- /3(0) (5) 

However, if a sufficient number of integrals of the motion is known, the 
evolution of the density matrix in time can be determined with the aid of a 
more direct method which does not require the preliminary calculation of 
the evolution operator. 

Let us consider an arbitrary system of 2N operators fj, j = 1, 2 ..... 2N. 
Let us introduce another set of operators ~0j, j = 1, 2 ..... 2N, related to f j  
and the initial statistical operator Po as follows: 

2/30 t = ( A , f 2 , - - . , f 2 N ) ,  = . . . . .  (6) 

The operators ~j always exist provided the operator/3o I exists: t~ =/3012/3o. 
In particular, if the initial density matrix can be expressed in the form 

Po = exp( -  fiHo) (6a) 

where fl is a certain parameter (in the equilibrium case/3- ~ is the temperature) 
and /4o is a formal "initial Hamiltonian," the operator ~a always exists. 
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Moreover, it can be considered as the integral of the motion corresponding 
to the Hamiltonian/to and depending on "time"/i/.  At the initial "momen t "  

/3 = 0 this integral of the motion coincides with the operator f: 

r = exp(/~0)fexp(-/3Ho) (6b) 

Let us designate the integrals of the motion that coincide at the initial 
moment of real time t with the operators f and q~ by the symbols ~ and ~ ,  
respectively. 

One can easily check that the operators f~, f, and 0(t) are related as 
follows: 

= O(t)~O-~(t )  

Therefore the following relations hold: 

: : = 

(7) 

(8) 

Proceeding to the kernel of the operator t~(t) [the density matrix p(xl; x2; t)], 
one obtains the following vector equation (or the system of 2N scalar 
equations): 

~(1)p(xl ; x2 ; t) = ~'~)p(x~ ; x2; t) (9) 

The symbol P(j)p(x~ ;... ; xj;...) means that the operator ~ acts on the function 
p as the function of the j th  argument only, while the other arguments are 
considered as parameters; for example, 

F<2>p(x; y) = f F(y; x')p(x; x') dx' 

IF(y; x') is the kernel of the operator F]. The symbol ~ r  means the transposed 
operator with the kernel ~(y ;  x), cI,(x; y) being the kernel of the operator 
@. The advantage of Eq. (9) consists in the following. In some cases the 
integrals of the motion of the quantum system can be simply obtained, e.g., 
proceeding from the correspondence between classical and quantum me- 
chanics or by means of some approximate methods. Then, solving Eq. (9) 
is the simplest and most direct way to calculate the density matrix, because 
no extra information such as the Green's function is needed in this approach. 
Note that, unlike the problem of calculating the Green's function with the 
aid of equations similar to Eq. (9), (1'2> when one has to know 2 N  integrals 
of the motion, in the case under study one has to know in general 6Nintegrals 
of the motion: 4N of them correspond to the evolution Hamiltonian /~(t) 
and other 2 N  correspond to the initial formal Hamiltonian /lo. However, 
in many cases the operators '$j can be expressed in terms of ffj, so that the 
required number of integrals of the motion is again 2N. 
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Equation (9) determines the density matrix up to an arbitrary factor 
depending only on time (the variable t in these equations is a parameter). 
To calculate this factor one should take into account the equation for the 
evolution of the density matrix 

ih(~/et)p(xl; x~; t) = [/~(1~ - /~(~]p(xi ;  x~; t) (10) 

(which becomes an ordinary differential equation since the dependence of 
the function p on x~ and x2 is already known) and the initial condition 
p(0) = Po. 

If  one chooses as the operators f j  the operators ~ and ~ and designates 
the operators corresponding to them c~ t as ~ and ~, respectively, then Eq. 
(9) can be rewritten as follows (capital letters designate the integrals of the 
motion corresponding to the operators .~, ~, Y, and ~), 

( s  - "~(~ "x �9 p( .  ~ / j P t  1, x~; t) = 0 (11) 

These equations were first used in Ref. 20. 
Let us consider an example. Suppose that the initial density matrix 

po is given by 
po =- exp[-�89 - x2) 2] (12) 

Using the identity 

a 1 8 a 
x~exp[ - -~(x l - -x2)2]  = (X2+a~-~x2) exp [ - -~ (xz - -x2 )  2] 

one obtains ~T = i + i~/ha; therefore ~ = z~ - i~/ha. Analogously, since 
(8/8xl + 8/Sx2)p0 = 0, one obtains ~ = ~. Consequently, Eq. (11) in the 
case under study has the following form: 

(s -- [ Rr  -- (i /ha)Prl(z) \ 
)p(xl; x~; t) = 0 03) PL~ 

Let us turn on at the moment t = 0 the uniform constant field 8. The 
quantum integrals of the motion R and P in this case coincide with the classical 
ones: 

t e l  2 (14) 
P = ~ -  ~t; R =  ~ - P m +  2---~ 

(m is the mass of a particle). Assuming a = m[flh 2 (this means that the initial 
state was an equilibrium state at the temperature/3-~) and substituting the 
operators (14) into Eq. (13), one obtains the following equations: 

( i h t ~ i h  8 i / 3 h )  xl -- x2 + - - ~  + (t + i/3h) g t  p(x l ;x2 ; t )  = 0 
m 8xi m 8x2 m 

0 + p ( x z ; x 2 ; t ) = 0  

(15) 
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The second of these equations means that p = p(xl - x2). Then the first 
equation immediately leads to the result 

p(xz'x2;t)= exp[ m ( x l -  x2) 2 iRt. ] 
, 2f lh2 + - -~  (x~ - x2) (16) 

[In the case considered Eq. (10) is reduced to the form 8p/Ot = 0.] Evidently, 
the calculations in this example are much easier and more elegant than the 
tedious integration by means of the formula (5). 

3. N O N E Q U I L I B R I U M  D E N S I T Y  M A T R I C E S  O F  
Q U A D R A T I C  S Y S T E M S  

The most general quadratic N-dimensional Hamiltonian can be written 
as follows: 

I3t = �89 + C(t)r 

q =  ( : ) ;  C =  (cl)  " e z  ' B =  (bl b2) b, ' ba=[J2 (17) 

B is a symmetric block 2N x 2N matrix (the matrices Bj, j = 1, 2, 3, 4, have 
the dimension N x N); cl and c2 are N-dimensional vectors. We consider 
Hermitian Hamiltonians; therefore B and C consist of real elements. 

The integrals of the motion X and P for quadratic systems are linear 
functions of the operators ~ and ~: 

= A ( t )  + A(t ) ;  A = aa a~ ' li= 

Substituting (18) into Eq. (3), one obtains the following system of or- 
dinary differential equations for the 2N x 2N matrix A(t) and the 2N- 
dimensional vector A(t): 

(d/dt)A(t) = AY~B; 

(d/dt)A(t) = AZC; 

(0 
A(O) = E2N; Y' = --EN 

A ( o )  = o 

(19) 

E~r is the N x Nuni t  matrix. The properties of the solutions to these equations 
were discussed in Refs. 1 and 2. 

The aim of the present section is to obtain the exact formula describing 
the time evolution of the density matrix of the quadratic system with the 
Hamiltonian (17) for t > 0 that was in the equilibrium state for t < 0. As 
was shown in Ref. 1, the equilibrium density matrix of a quadratic system is 
the exponential of a certain quadratic form (provided the system is steady, 
i.e., the matrix B is nonnegative definite). 
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In  addit ion,  p(x~ ; x2) = p*(x2; xl)  due to the Hermit ic i ty  of  the statistical 
operator .  Consequently,  the initial density matr ix  can be expressed as 
follows: 

po(xl; x2) = K e x p ( - � 8 9  - x l g x 2  - �89 + dxl + d 'x2)  
(20) 

a = r g = g* 

a and g are N x N matr ices;  d is an N-dimensional  vector  (the tilde means  
t ransposi t ion;  the asterisk denotes  complex  conjugat ion;  the dagger  denotes  
Hermi t i an  conjugation).  

One can check tha t  the opera tors  ~ r  and ~ r  in t roduced in the previous 
section can be expressed in the case o f  the matr ix  P0 given by Eq. (20) in 
te rms of  the opera tors  5~ and f ' :  

~ r  = g - l [ ( i / h ) ~ r  _ a . ~ r  + d*] 
(21) 

ffl  r = i h ( g  - a g -  la*)Xr  - a g -  l ~ r  + i h ( a g -  ld* - d) 

Substi tut ing these opera tors  into Eq. (11), one obtains a system o f  linear 
differential equat ions in part ial  derivatives o f  the first order. The  solution 
to this system has the same fo rm as (20) but  with new coefficients a ' ,  g ' ,  and 
d'. To  find these coefficients it is sufficient to obta in  the dependence o f  
p(xl ;  x2) on only one a rgument  (xl  or  x=), due to the relat ion p(xl ;  x2) = 
p*(x2; xl).  The  calculations lead to the following formulas  [to obta in  these 
formulas  one should take  into account  tha t  the elements o f  the mat r ix  A(t)  
satisfy several identities following f rom the relat ion AZA = Z]<1,2): 

a '  = ( i / h ) a g  l [a ,  -- ( i /h)x~b*g - 1,~a 11 (22) 

g '  = (l/hZ)AylXSt;1 (23) 

d ' =  ( i / h ) a y l ( X y  - -  82) (24) 

We have int roduced the following nota t ion:  

~b = a + (i/h)a,Aa ~ = 

X = (~b*g - l~b - g * ) - *  = X' (25) 

Y = ~b*g-ll * - t**; I* = d - ( i / h ) ( 5 ,  - A1AK15Z) 

The  preexponent ia l  factor  K '  can be obta ined f rom Eq. (10): 

{fo ) K '  = K exp [h- 1 Im(Tr (b , a ' )  - d 'b ld ' )  - 2cl Re d'] d r  (26a) 

= K[det(h2Aa2gx- 1)] - 1/2 e x p ( � 8 9  1~. + �89 ~gx*Y*) (26b) 
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The formulas (22)-(26) were obtained (in other notations) in Ref. 20. 
If  the initial matrix p0 has the form (12), i.e., d = 0, a = - g  = aEN, then 
the formulas (22)-(26) can be simplified: 

a' = ah{~Af I + (i/h)A;iA2 
(27) 

g '  = -aAi-lAi-1; d' = -(i/h)hi-161; K '  = K(det hi) -~ 

Therefore in this important special case one only has to calculate the matrices 
hi and ~2 and the vector Sl. Physically the result (27) means that if the system 
was in the spatially uniform state [po(X; x) = const] at the initial moment, 
it will stay in the spatially uniform state at all subsequent moments [with 
the space density K'  = K(det At)-1]. 

4. P H E N O M E N O L O G I C A L  H A M I L T O N I A N S  F O R  
D I S S I P A T I V E  S Y S T E M S  

The essence of the phenomenological approach to nonequilibrium 
processes consists in the following. Starting from the known classical 
equations of motion of the dissipative system, one tries to describe this 
system in the language of  Hamiltonian mechanics. If  this is possible, then 
replacing the canonically conjugate coordinates and moments by the operators 
one obtains the quantum phenomenological model of the nonequilibrium 
system under study. In the present section we consider dissipative systems 
that can be described by quadratic Hamiltonians. 

Let us consider a classical system described by equations of motion of 
the type 

G~(~; ~; x; t) = 0, i = l, 2,..., N; G = (G1, G2 ..... GN) (28) 

In the general case these equations cannot be derived from any 
Lagrangian. However, one can try to construct an equivalent system of 
equations 

N 

G~' = ~" F~k(s x; t)Gk0t;/r x; t) = 0, detllF~k[[ # 0. (29) 
k = l  

such that the solutions to Eq. (29) are the solutions to Eq. (28) and vice 
versa, but the functions G~' can be obtained from a certain Lagrangian 
L(~; x; t): 

8 8L ~L 
G~' = dt aYcj ~xj (30) 

Havas (19) proved that such equivalent Lagrangians can be found for a wide 
class of  functions G~0t; ~; x; t). Let us apply Havas' idea to find the equiva- 
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lent Lagrangian for the general system of  linear differential equations, which 
can be written in the matrix form as follows: 

G - ft + A(t)i~ + D(t)x + J( t)  = 0 (31) 

A and D are arbitrary real N x N matrices, and J( t)  is an arbitrary N- 
dimensional real vector. It is natural to look for the equivalent Lagrangian 
in the form of  a quadratic form of x and ~k: 

L = �89 + �89 + ~V(t)x + Rx + S/~; M = j~r; W =  I~ 
(32) 

Therefore the matrix F = IIF, kll must depend only on time. Substituting the 
expressions (29), (31), and (32) into Eq. (30), one obtains the following 
system of  equations: 

F = M = P (33a) 

FA = ~ + V -  V (33b) 

FD = 1 2 -  W (33c) 

f J  = $ - m (33d) 

I f  Eq. (31) has the Lagrange form, then F = Eu; in this case Eqs. 
(33a)-(33d) lead to the following restrictions for the matrices A and D: 

A = - . 4 ;  D - /3 = A (34) 

To consider the general case it is convenient to rewrite Eqs. (33a)-(33d) 
(excluding the matrices V and W from them) as follows: 

2F = FA  + A F  (35) 

F ( D  - �88 2 - �89 = (/3 -- �88 _ �89 (36) 

Therefore the problem is reduced to finding the symmetric matrix F(t)  
satisfying both Eqs. (35) and (36). Let us consider for simplicity the case 
A = 0. Then the solution to Eq. (35) can be expressed as follows(3): 

F(t)  = exP(�89 Fo exp(�89 (37) 

Evidently, if the initial matrix Fo is symmetric, the matrix F(t)  is also 
symmetric. Equation (36) imposes the following restrictions on Fo: 

Fo[exp(�89 - 1A2) e x p ( -  �89 

= [exp( -  �89 - �88189 (38) 

Equation (38) is equivalent to the following set of  equations: 

Fo(D - �88 2) = (/3 - �88 (38a) 

Fo[A, D] = [A, D]Fo; [A, D] - A D  -- DA  (38b) 

Fo[A, D], = [A, O]=Fo; [A, D], --- [A, [A, D],-z] ;  n /> 2 (38c) 
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Each of these equations independently has nonsingular symmetric 
solutions for arbitrary matrices A and D. Indeed, since the matrices D and 13 
have the same normal Jordan form, (2~)/3 = f D f - 1 ,  wheref i s  a nonsingular 
matrix. Then the matrix F = f + f i s  the required symmetric solution to the 
equation F D  = /3F .  However, the system of equations (38a)-(38c) in the 
general case is incompatible. For example, if the two-dimensional matrices 
A and D'  = D - �88 2 are given by 

0) O_r O) �9 �9 

a21 a2 

( o  Oo) 
[A,  D] = a2~(d~ - d2) 

a21 r 0; d l # d 2  

(39) 

then any matrix F satisfying both Eqs. (38a) and (38b) has the only nonzero 
element Fl l ;  therefore it is singular. 

Consequently, we arrive at the conclusion that in the general case the 
system (31) cannot be replaced by an equivalent system with quadratic 
Lagrangian. 

We have no intention of deriving in the present paper all the necessary 
and suff• conditions for the compatibility of Eqs. (38a)-(38c). Instead 
we consider some simple sufficient conditions. One such condition is 

[A, D] = AEN (40) 

(note that this is not a necessary condition) or its simpler variant [A, D] = 0. 
A more general condition is 

[A, D], = f , (D - �88 2) (41) 

where the f ,  are arbitrary functions. 
If  F satisfies the equations 

F A  = - . d F ;  F D  = / 3 F  (42) 

then the system (31) can be reduced to the Lagrange form by means of a 
time-independent transformation. Physically this means that Eq. (31) are 
simply written in coordinate-free form: For example, the equations ~ = .#.~f/rnx 

and j~ = - 2,; /g/mu have no Lagrangian, while equivalent equations rnxS~ = )~a%f 
and muj~ = - 2a%f can be obtained from the usual Lagrangian L = �89 + 
rnu) 2) + ~x)~. One of the necessary conditions for the compatibility of Eqs. 
(42) is the equality of all elementary divisors of the matrices A and -.~.(ul) 

The choice of the other parameters determining the quadratic form (32) 
the matrices Wand V, and the vectors R and S--is not unique. The simplest 

and most symmetric expressions for them are as follows: 

V = - V  = � 88  - -  A F ) ,  W = 7g(FA 2 - .,42F) - F D  

R = - F J ,  S = 0 (43)  
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The Hamiltonian can be constructed as usual: H = p/~ - L, p = 9L/9~:  

H -- �89 lp _ pF-1Vx + �89 V - W)x - Rx (44) 

For  example, in the important special case of  a spatially uniform system, 
when D = 0, the equivalent Hamiltonian always exists and can be written 
in the following simple form: 

H = � 8 9  + x M o ~ [ e x p ( A t ) ] J  (45) 

with the symmetric nonsingular matrix Mo satisfying the equation 

m J  = AMo 

Considering x and p in Eq. (44) as operators, we arrive at the phenomeno- 
logical quantum model of the classical dissipative system (31). 

5. E X A M P L E S  

The simplest example is the case where the matrix A is proportional to 
the unit matrix: A -- FEN. Then the equivalent Hamiltonian has the form 
(1). Since such Hamiltonians have been considered in many papers, (11-18~ 
let us consider here another interesting example, which has not been studied 
previously: the motion of  a charged particle under the action of  uniform 
electric and magnetic fields and a frictional force proportional to the velocity. 
The classical equations of  motion are as follows (evidently, it is sufficient to 
consider only the two-dimensional problem): 

G : -  5 ~ - ~ p +  F : ~ - ~ l ( t )  = 0  

G2 = j~ + 3f'2 + 1"9 - E2(t) = 0 (46) 

m = e = c = 1; o~t ~ = c o n s t  

In this case the matrix D is equal to zero, so that the equivalent Hamil- 
tonian is given by Eq. (45). The matrices A and e x p ( - A t )  are given by 

( F  --p~) ~ c o s ( ~ t ) s i n ( . ~ t ) ~  (47) 
A = ; e x p ( - A t )  = \-sin(,~Yft) c o s ( ~ t ) ]  

The matrix Mo can be chosen as follows: 

o) 
Therefore the Hamiltonian is given by 

H = e-rt{ �89 2 - p 2 )  _ [sin(o~f,t)]pxpv} 

+ er t{[cos(s~t )][g2( t )y  - ~l(t)x]  

+ [s in(~" t )][g2( t )x  + d~ (49) 
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Let us consider the simplest case, when the initial matrix p0 has the form 
(12). This means that for t < 0 the external field is absent, and the system is 
in the equilibrium state. Since the matrices b2 and b4 in the Hamiltonian 
(49) are equal to zero, then h, = E2, hz = 0 (the sense of  these matrices was 
explained in Section 3). 

Furthermore, since the Hamiltonian (49) is only a crude model of  the 
real physical system, the density matrix p ( t )  may have a physical significance 
only for large t, such that e x p ( - P t )  << 1, when the nonsteady-state process 
caused by the sudden switching on of the external fields will end. Therefore 
one only has to calculate the asymptotic formula for the vector fi,(0 for 
t >> P - ' .  This formula has the following form: 

f t  r, [~2( ' )  sin(..~-) - ~ , ( . )  cos(W.)'~ 
Sift) = _ ~o e ~2(T) COS(W~') + 8,(T) s in( .~-)]  d~ + O(e -rt) (50) 

Using the formulas (27), one can obtain the following asymptotic expression 
for p(t) [for simplicity we give the result only in the simplest case 8 = const; 
r = (x ,y ) ] :  

p(r~; r2; t) = po exp ~ 6~(t)(r2 - r,) 

i e r t  
= Po exp h p2 + ~ 2  {[P sin(Jet) - ~ cos(,~t)]  

x [ G ( x ,  - + G(y  - 

+ [P cos(af't) + af' s i n ( a f ' t ) ] [ g 2 ( y ,  - Y2)  - g , ( x ,  - x2)]}) 

t >> P - '  (51) 

The current density operator is 

( ix)  = i [/),  ( ~ ) ] =  e_r t (  f ixcos(3~ ' t ) -  p~ s i n (Wt )~  (52) 
j~ h -ply cos(~Cft) -- fix s i n ( ~ t ) ]  

Consequently, the current density is 

j = �89 ; r2) + j[2)p(r, ; r z ) ] [ r l  =,.2 

_ p o ( r ; , )  { + re, ] (53) 
p2 + yd2 \ _.r + F G !  

One can easily see that Eq. (53) describes the Hall effect. This means that the 
Hamiltonian (49), in spite of  its very exotic form, leads to quite reasonable 
results. 
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In the special case ogz = 0 the density matrix (51) becomes 

ie rt } 
p(rl; r2; t) = Oo e x p \ - ~ - ~ -  [d~ - Y2) - d~l(xl - x2)] , t >> r -1 

and formula (53) gives Ohm's  law j = p(x; x ) P - l d  ~. 

(54) 

6. C O N C L U S I O N  

The examples considered above show that both the method using the 
integrals of  the motion and the method using phenomenological Hamilton- 
ians are useful tools for investigating a sufficiently wide class ofnonequilibrium 
quantum systems. These methods have many obvious defects, but they also 
have evident advantages, the most important of  which is the simplicity of  the 
calculations. Therefore these methods can be used for solving many interesting 
physical p roblems-- for  example, for investigating galvanomagnetic proper- 
ties of  thin films (provided the film is approximated by a harmonic potential). 
In addition, the exact formulas for the density matrices of  quadratic systems 
obtained in Section 3 enable one to study in detail nonequilibrium quadratic 
systems from the microscopic point of  view and to compare the results with 
the results of  the phenomenological approach and various known approxi- 
mate methods. 
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